|
|
|
# common.R
|
|
|
|
# General-purpose functions
|
|
|
|
# Taha Ahmed, Jan 2011
|
|
|
|
|
|
|
|
# CONTENTS
|
|
|
|
# >>>> ConvertRefPot
|
|
|
|
# >>>> Celsius2Kelvin
|
|
|
|
# >>>> Kelvin2Celsius
|
|
|
|
# >>>> as.radians
|
|
|
|
# >>>> as.degrees
|
|
|
|
# >>>> molarity2mass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
##################################################
|
|
|
|
################# ConvertRefPot ##################
|
|
|
|
##################################################
|
|
|
|
ConvertRefPot <- function(argpotential, argrefscale, valuerefscale) {
|
|
|
|
# Converts from some reference potential scale into another
|
|
|
|
# SHE: standard hydrogen electrode scale
|
|
|
|
# Ag/AgCl: silver silver-chloride electrode scale
|
|
|
|
# SCE: standard calomel scale
|
|
|
|
#
|
|
|
|
##### Add more reference electrodes here >>
|
|
|
|
refpotatSHEzero <- c( 0, -0.21, -0.24, 3)
|
|
|
|
refrownames <- c( "SHE", "Ag/AgCl", "SCE", "Li/Li+")
|
|
|
|
refcolnames <- c("SHE0", "AgCl0", "SCE0", "Li0")
|
|
|
|
##### Add more reference electrodes here <<
|
|
|
|
#
|
|
|
|
SHE0 <- data.frame(matrix(refpotatSHEzero, ncol=length(refpotatSHEzero), byrow=T))
|
|
|
|
refpotmtx <- matrix(NA, length(SHE0), length(SHE0))
|
|
|
|
refpotmtx[,1] <- matrix(as.matrix(SHE0), ncol=1, byrow=T)
|
|
|
|
for (c in 2:length(SHE0)) {
|
|
|
|
# loop over columns (except the first)
|
|
|
|
for (r in 1:length(SHE0)) {
|
|
|
|
# loop over rows
|
|
|
|
refpotmtx[r, c] <- refpotmtx[r, 1] - refpotmtx[c, 1]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
refpotdf <- as.data.frame(refpotmtx)
|
|
|
|
names(refpotdf) <- refcolnames
|
|
|
|
row.names(refpotdf) <- refrownames
|
|
|
|
## So far we have made a matrix of all the possible combinations,
|
|
|
|
## given the vector refpotatSHEzero. The matrix is not strictly necessary,
|
|
|
|
## but it may prove useful later. It does.
|
|
|
|
#
|
|
|
|
# Match argrefscale to the refrownames
|
|
|
|
argmatch <- match(argrefscale, refrownames, nomatch = 0)
|
|
|
|
# Match valuerefscale to the refrownames
|
|
|
|
valuematch <- match(valuerefscale, refrownames, nomatch = 0)
|
|
|
|
# We simply assume that the match was well-behaved
|
|
|
|
valuepotential <- argpotential + refpotdf[valuematch, argmatch]
|
|
|
|
# Check that arg and value electrodes are within bounds for a match
|
|
|
|
if (argmatch == 0 || valuematch == 0) {
|
|
|
|
# No match
|
|
|
|
# Perform suitable action
|
|
|
|
message("Arg out of bounds in call to ConvertRefPot")
|
|
|
|
valuepotential <- NA
|
|
|
|
}
|
|
|
|
return(valuepotential)
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
##################################################
|
|
|
|
############### Celsius2Kelvin ###################
|
|
|
|
##################################################
|
|
|
|
Celsius2Kelvin <- function(Celsius) {
|
|
|
|
# Converts temperature from Celsius to Kelvin
|
|
|
|
#
|
|
|
|
# Check and correct for values below -273.15
|
|
|
|
if (Celsius < -273.15) {
|
|
|
|
# If Celsis is less than absolute zero, set it to absolute zero
|
|
|
|
Celsius <- -273.15
|
|
|
|
}
|
|
|
|
Kelvin <- Celsius + 273.15
|
|
|
|
return(Kelvin)
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
##################################################
|
|
|
|
############### Kelvin2Celsius ###################
|
|
|
|
##################################################
|
|
|
|
Kelvin2Celsius <- function(Kelvin) {
|
|
|
|
# Converts temperature from Kelvin to Celsius
|
|
|
|
#
|
|
|
|
# Check and correct for negative values
|
|
|
|
if (Kelvin < 0) {
|
|
|
|
# If Kelvin is less than zero, set it to zero
|
|
|
|
Kelvin <- 0
|
|
|
|
}
|
|
|
|
Celsius <- Kelvin - 273.15
|
|
|
|
return(Celsius)
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
##################################################
|
|
|
|
################# as.radians #####################
|
|
|
|
##################################################
|
|
|
|
as.radians <- function(degrees) {
|
|
|
|
# Converts from degrees to radians
|
|
|
|
radians <- degrees * (pi / 180)
|
|
|
|
return(radians)
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
##################################################
|
|
|
|
################# as.degrees #####################
|
|
|
|
##################################################
|
|
|
|
as.degrees <- function(radians) {
|
|
|
|
# Converts from radians to degrees
|
|
|
|
degrees <- radians * (180 / pi)
|
|
|
|
return(degrees)
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
##################################################
|
|
|
|
############### molarity2mass ####################
|
|
|
|
##################################################
|
|
|
|
molarity2mass <- function(formulamass, volume, molarity) {
|
|
|
|
# Calculates the required mass of
|
|
|
|
# the substance to be dissolved.
|
|
|
|
# ARGS: formulamass - formula mass of the substance (in gram per mole)
|
|
|
|
# volume - volume of the final solution (in liters)
|
|
|
|
# molarity - molarity (in moles per liter)
|
|
|
|
# VALUE: mass of substance (in grams)
|
|
|
|
#
|
|
|
|
mass <- formulamass * volume * molarity
|
|
|
|
# Unit check:
|
|
|
|
# [g * mol-1] * [liter] * [mole * liter-1] = [g]
|
|
|
|
return(mass)
|
|
|
|
}
|