You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

95 lines
4.2 KiB
R

source("/home/taha/chepec/chetex/common/R/common.R")
##################################################
################## Ramanpk #######################
##################################################
Ramanpk <- function(Raman.exp, kerpk = 1, fitmaxiter = 50, gam = 0.6, scl.factor = 0.1) {
Raman.base <- baselinefit(Raman.exp, tau = 2.0, gam = gam, scl.factor = scl.factor, maxwdth = 200)
# This loop deals with the output from baselinefit()
# It makes a "melted" dataframe in long form for each
# separated peak for some baseline parameters
Raman.pks <- data.frame()
Raman.pks.basl <- data.frame()
Raman.pks.pmg <- data.frame()
Raman.pks.spl <- data.frame()
peaks <- 1:length(Raman.base$npks)
for (s in peaks) {
# recorded data in long form by separated peak
Raman.pks <- rbind(Raman.pks, # column names assigned after loop
data.frame(peak = factor(peaks[s]),
kernel = NA,
Raman.exp[Raman.base$indlsep[s]:Raman.base$indrsep[s], ]))
# the calculated baseline in long form by separated peak
Raman.pks.basl <- rbind(Raman.pks.basl,
data.frame(peak = factor(peaks[s]),
kernel = NA,
x = Raman.exp[Raman.base$indlsep[s]:Raman.base$indrsep[s]],
y = Raman.base$baseline$basisl[Raman.base$indlsep[s]:Raman.base$indrsep[s]]))
# the taut string estimation in long form by separated peak
Raman.pks.pmg <- rbind(Raman.pks.pmg,
data.frame(peak = factor(peaks[s]),
kernel = NA,
x = Raman.exp[Raman.base$indlsep[s]:Raman.base$indrsep[s]],
y = Raman.base$pmg$fn[Raman.base$indlsep[s]:Raman.base$indrsep[s]]))
# the weighted smoothed spline in long form by separated peak
Raman.pks.spl <- rbind(Raman.pks.spl,
data.frame(peak = factor(peaks[s]),
kernel = NA,
x = Raman.exp[Raman.base$indlsep[s]:Raman.base$indrsep[s]],
y = Raman.base$spl$reg[Raman.base$indlsep[s]:Raman.base$indrsep[s]]))
}
# Column names assigned to d.pks
names(Raman.pks) <- c("peak", "kernel", "x", "y")
# This loop calls pkdecompint() on each peak separately
# It makes a "melted" dataframe in long form for:
Raman.fit <- list() # holds pkdecompint output
Raman.fit.fitpk <- data.frame() # contains fitting curves
Raman.fit.parpk <- data.frame() # physical parameters by peak and kernel
Raman.nobasl <- data.frame() # data with baseline removed
peaks <- 1:length(Raman.base$npks)
for (s in peaks) {
######## PKDECOMPINT ########
if (length(kerpk) > 1) {
# set number of kernels per peak manually
Raman.fit[[s]] <- pkdecompint(Raman.base, intnum = s,
k = kerpk[s], maxiter = fitmaxiter)
} else {
# use number of kernels determined by baselinefit()
Raman.fit[[s]] <- pkdecompint(Raman.base, intnum = s,
k = Raman.base$npks[s], maxiter = fitmaxiter)
}
# Setup the dataframe that makes up the peak table
for (kernel in 1:Raman.fit[[s]]$num.ker) {
Raman.fit.parpk <- rbind(Raman.fit.parpk,
data.frame(peak = factor(Raman.fit[[s]]$intnr),
kernel = factor(kernel),
x = Raman.fit[[s]]$parpks[kernel, "loc"],
height = Raman.fit[[s]]$parpks[kernel, "height"],
area = Raman.fit[[s]]$parpks[kernel, "intens"],
fwhm = Raman.fit[[s]]$parpks[kernel, "FWHM"],
m = Raman.fit[[s]]$parpks[kernel, "m"],
accept = Raman.fit[[s]]$accept))
Raman.fit.fitpk <- rbind(Raman.fit.fitpk,
data.frame(peak = factor(peaks[s]),
kernel = factor(kernel),
x = Raman.fit[[s]]$x,
y = Raman.fit[[s]]$fitpk[kernel, ]))
}
Raman.nobasl <- rbind(Raman.nobasl,
data.frame(peak = factor(peaks[s]),
x = Raman.fit[[s]]$x,
y = Raman.fit[[s]]$y))
}
return(list(Raman.base = Raman.base,
Raman.peaks = Raman.pks,
Raman.fit.parpk = Raman.fit.parpk,
Raman.fit.fitpk = Raman.fit.fitpk,
Raman.nobasl = Raman.nobasl))
}