################################################## #################### edspk ####################### ################################################## edspk <- function(eds.exp, kerpk = 1, fitmaxiter = 50) { eds.base <- baselinefit(eds.exp, tau=2.0, gam=1.0, scl.factor=3.0, maxwdth=0.20) # This loop deals with the output from baselinefit() # It makes a "melted" dataframe in long form for each # separated peak for some baseline parameters eds.pks <- data.frame() eds.pks.basl <- data.frame() eds.pks.pmg <- data.frame() eds.pks.spl <- data.frame() peaks <- 1:length(eds.base$npks) for (s in peaks) { # recorded data in long form by separated peak eds.pks <- rbind(eds.pks, # column names assigned after loop data.frame(peak = factor(peaks[s]), kernel = NA, eds.exp[eds.base$indlsep[s]:eds.base$indrsep[s], ])) # the calculated baseline in long form by separated peak eds.pks.basl <- rbind(eds.pks.basl, data.frame(peak = factor(peaks[s]), kernel = NA, x = eds.exp[eds.base$indlsep[s]:eds.base$indrsep[s]], y = eds.base$baseline$basisl[eds.base$indlsep[s]:eds.base$indrsep[s]])) # the taut string estimation in long form by separated peak eds.pks.pmg <- rbind(eds.pks.pmg, data.frame(peak = factor(peaks[s]), kernel = NA, x = eds.exp[eds.base$indlsep[s]:eds.base$indrsep[s]], y = eds.base$pmg$fn[eds.base$indlsep[s]:eds.base$indrsep[s]])) # the weighted smoothed spline in long form by separated peak eds.pks.spl <- rbind(eds.pks.spl, data.frame(peak = factor(peaks[s]), kernel = NA, x = eds.exp[eds.base$indlsep[s]:eds.base$indrsep[s]], y = eds.base$spl$reg[eds.base$indlsep[s]:eds.base$indrsep[s]])) } # Column names assigned to d.pks names(eds.pks) <- c("peak", "kernel", "x", "y") # This loop calls pkdecompint() on each peak separately # It makes a "melted" dataframe in long form for: eds.fit <- list() # holds pkdecompint output eds.fit.fitpk <- data.frame() # contains fitting curves eds.fit.parpk <- data.frame() # physical parameters by peak and kernel eds.nobasl <- data.frame() # data with baseline removed peaks <- 1:length(eds.base$npks) for (s in peaks) { ######## PKDECOMPINT ######## if (length(kerpk) > 1) { # set number of kernels per peak manually eds.fit[[s]] <- pkdecompint(eds.base, intnum = s, k = kerpk[s], maxiter = fitmaxiter) } else { # use number of kernels determined by baselinefit() eds.fit[[s]] <- pkdecompint(eds.base, intnum = s, k = eds.base$npks[s], maxiter = fitmaxiter) } # Setup the dataframe that makes up the peak table for (kernel in 1:eds.fit[[s]]$num.ker) { eds.fit.parpk <- rbind(eds.fit.parpk, data.frame(peak = factor(eds.fit[[s]]$intnr), kernel = factor(kernel), x = eds.fit[[s]]$parpks[kernel, "loc"], height = eds.fit[[s]]$parpks[kernel, "height"], area = eds.fit[[s]]$parpks[kernel, "intens"], fwhm = eds.fit[[s]]$parpks[kernel, "FWHM"], m = eds.fit[[s]]$parpks[kernel, "m"], accept = eds.fit[[s]]$accept)) eds.fit.fitpk <- rbind(eds.fit.fitpk, data.frame(peak = factor(peaks[s]), kernel = factor(kernel), x = eds.fit[[s]]$x, y = eds.fit[[s]]$fitpk[kernel, ])) } eds.nobasl <- rbind(eds.nobasl, data.frame(peak = factor(peaks[s]), x = eds.fit[[s]]$x, y = eds.fit[[s]]$y)) } return(list(eds.base = eds.base, eds.peaks = eds.pks, eds.fit.parpk = eds.fit.parpk, eds.fit.fitpk = eds.fit.fitpk, eds.nobasl = eds.nobasl)) }