parent
f96a3dc92e
commit
77ae28f0d4
@ -1,17 +0,0 @@ |
||||
% Generated by roxygen2: do not edit by hand |
||||
% Please edit documentation in R/unit-converters-electrochemical.R |
||||
\name{AVS2SHE} |
||||
\alias{AVS2SHE} |
||||
\title{AVS -> SHE} |
||||
\usage{ |
||||
AVS2SHE(avs) |
||||
} |
||||
\arguments{ |
||||
\item{avs}{Potential in AVS scale} |
||||
} |
||||
\value{ |
||||
potential in SHE scale (numeric) |
||||
} |
||||
\description{ |
||||
Converts from absolute vacuum scale (AVS) to SHE scale |
||||
} |
@ -1,21 +0,0 @@ |
||||
% Generated by roxygen2: do not edit by hand |
||||
% Please edit documentation in R/unit-converters-electrochemical.R |
||||
\name{ConvertRefPot} |
||||
\alias{ConvertRefPot} |
||||
\title{Convert from one electrochemical scale to another} |
||||
\usage{ |
||||
ConvertRefPot(argpotential, argrefscale, valuerefscale) |
||||
} |
||||
\arguments{ |
||||
\item{argpotential}{potential (numeric)} |
||||
|
||||
\item{argrefscale}{input reference scale (char string)} |
||||
|
||||
\item{valuerefscale}{output reference scale (char string)} |
||||
} |
||||
\value{ |
||||
potential in output reference scale (numeric) |
||||
} |
||||
\description{ |
||||
Convert from one electrochemical scale to another |
||||
} |
@ -1,25 +0,0 @@ |
||||
% Generated by roxygen2: do not edit by hand |
||||
% Please edit documentation in R/unit-converters-electrochemical.R |
||||
\name{ConvertRefPotEC} |
||||
\alias{ConvertRefPotEC} |
||||
\title{ConvertRefPotEC} |
||||
\usage{ |
||||
ConvertRefPotEC(argpotential, argrefscale, valuerefscale) |
||||
} |
||||
\arguments{ |
||||
\item{argpotential}{potential (numeric)} |
||||
|
||||
\item{argrefscale}{input reference scale (character string)} |
||||
|
||||
\item{valuerefscale}{output reference scale (character string)} |
||||
} |
||||
\value{ |
||||
potential in output reference scale (numeric) |
||||
} |
||||
\description{ |
||||
This function does the heavy lifting. |
||||
Converts from an electrochemical reference scale into another. |
||||
SHE: standard hydrogen electrode |
||||
Ag/AgCl: silver silver-chloride electrode (3M KCl) |
||||
SCE: saturated calomel electrode |
||||
} |
@ -1,65 +0,0 @@ |
||||
% Generated by roxygen2: do not edit by hand |
||||
% Please edit documentation in R/chemistry-tools.R |
||||
\name{OxygenSolubilityWater} |
||||
\alias{OxygenSolubilityWater} |
||||
\title{Oxygen solubility in water} |
||||
\usage{ |
||||
OxygenSolubilityWater(temperature) |
||||
} |
||||
\arguments{ |
||||
\item{temperature}{numeric, vector. In degrees Celsius.} |
||||
} |
||||
\value{ |
||||
a dataframe with the following columns: |
||||
+ "temperature" same as the supplied temperature |
||||
+ "g/cm-3" oxygen solubility expressed as gram per cubic cm |
||||
+ "mg/L" ditto expressed as milligram per litre |
||||
+ "mol/L" ditto expressed as moles per litre (molarity) |
||||
+ "permoleculewater" number of O2 molecules per molecule of water |
||||
Note: mg/L is equivalent to ppm by weight (since water has approx |
||||
unit density in the temperature range 0-50 Celsius). |
||||
} |
||||
\description{ |
||||
Oxygen solubility in water which is in contact with |
||||
air saturated with water vapour, as a function of |
||||
temperature and at a total pressure of 760 torr. |
||||
} |
||||
\details{ |
||||
Some background: as the temperature of a gasesous solution is raised the |
||||
gas is driven off until complete degassing occurs at the boiling point |
||||
of the solvent. This variation of solubility with temperature can be |
||||
derived from thermodynamic first principles. |
||||
But the variation of oxygen solubility in water cannot be represented by a |
||||
simple relationship (derived from thermodynamic first principles), and so |
||||
more complicated expressions which are fitted to empirical data have |
||||
to be used. |
||||
|
||||
Hitchman, Measurement of Dissolved Oxygen, 1978 reproduce a table by |
||||
Battino and Clever (1966) that presents experimental values of the |
||||
so-called Bunsen absorption coefficient (this is the volume of gas, at 0 C |
||||
and 760 torr, that, at the temperature of measurement, is dissolved in one |
||||
volume of the solvent when the partial pressure of the gas is 760 torr) |
||||
recorded by eleven research groups up until 1965. The standard error of the |
||||
mean value is never greater +-0.5%. The mean values from this table are |
||||
probably accurate enough for most applications. |
||||
Hitchman notes that the data in this table can be fitted by two forms of |
||||
equations: one form obtained from Henry's law (under the restriction that |
||||
the partial pressure of the gas remains constant), and another form by |
||||
describing the variation with temperature by fitting a general power series. |
||||
The latter approach is used in this function. |
||||
|
||||
Hitchman chooses to fit a fourth degree polynomial, and found that the |
||||
square of the correlation coefficient was 0.999996. |
||||
|
||||
For more background and detailed derivation of the formula used here, |
||||
see section 2.2 (pp. 11) in Hitchman. |
||||
|
||||
This formula is strictly speaking only valid for 0 < T < 50 celsius. |
||||
The function will return values outside this range, but with a warning. |
||||
} |
||||
\examples{ |
||||
\dontrun{ |
||||
OxygenSolubilityWater(22) |
||||
OxygenSolubilityWater(c(2, 7, 12, 30)) |
||||
} |
||||
} |
@ -1,24 +0,0 @@ |
||||
% Generated by roxygen2: do not edit by hand |
||||
% Please edit documentation in R/unit-converters-electrochemical.R |
||||
\name{RefCanonicalName} |
||||
\alias{RefCanonicalName} |
||||
\title{Get standardised name of reference electrode} |
||||
\usage{ |
||||
RefCanonicalName(refname) |
||||
} |
||||
\arguments{ |
||||
\item{refname}{string or a vector of strings} |
||||
} |
||||
\value{ |
||||
vector with corresponding "canonical" name or empty string (if none found) |
||||
} |
||||
\description{ |
||||
Given a reference electrode label, this function returns its canonical name |
||||
(as defined by this package). |
||||
This function tries to match against as many variations as possible for each |
||||
reference electrode. |
||||
The entire point of this function is to decrease the mental load on the user |
||||
by not requiring them to remember a particular label or name for each reference |
||||
electrode, instead almost any sufficiently distinct label or string will still |
||||
be correctly identified. |
||||
} |
@ -1,17 +0,0 @@ |
||||
% Generated by roxygen2: do not edit by hand |
||||
% Please edit documentation in R/unit-converters-electrochemical.R |
||||
\name{SHE2AVS} |
||||
\alias{SHE2AVS} |
||||
\title{SHE -> AVS} |
||||
\usage{ |
||||
SHE2AVS(she) |
||||
} |
||||
\arguments{ |
||||
\item{she}{Potential in SHE scale} |
||||
} |
||||
\value{ |
||||
potential in AVS scale (numeric) |
||||
} |
||||
\description{ |
||||
Converts from SHE scale to absolute vacuum (AVS) scale |
||||
} |
@ -1,25 +0,0 @@ |
||||
% Generated by roxygen2: do not edit by hand |
||||
% Please edit documentation in R/chemistry-tools.R |
||||
\name{VapourPressureWater} |
||||
\alias{VapourPressureWater} |
||||
\title{Vapour pressure of water} |
||||
\usage{ |
||||
VapourPressureWater(temperature) |
||||
} |
||||
\arguments{ |
||||
\item{temperature}{numeric vector, in degrees Celsius} |
||||
} |
||||
\value{ |
||||
vapour pressure of water, in kilopascal |
||||
} |
||||
\description{ |
||||
Vapour pressure of water as a function of temperature |
||||
This function returns the vapour pressure of water at the given |
||||
temperature(s) from the common::vapourwater dataset. |
||||
} |
||||
\examples{ |
||||
\dontrun{ |
||||
VapourPressureWater(45) |
||||
VapourPressureWater(c(20, 25, 45, 60)) |
||||
} |
||||
} |
@ -1,29 +0,0 @@ |
||||
% Generated by roxygen2: do not edit by hand |
||||
% Please edit documentation in R/unit-converters-electrochemical.R |
||||
\name{as.SHE} |
||||
\alias{as.SHE} |
||||
\title{Convert from electrochemical or physical scale to SHE} |
||||
\usage{ |
||||
as.SHE(potential, scale, electrolyte = "", concentration = "saturated", |
||||
temperature = 25, as.SHE.data = potentials.as.SHE()) |
||||
} |
||||
\arguments{ |
||||
\item{potential}{potential in volt} |
||||
|
||||
\item{scale}{name of the original scale} |
||||
|
||||
\item{electrolyte}{optional, specify electrolyte solution, e.g., "KCl(aq)". Must match value in \code{as.SHE.data$electrolyte}.} |
||||
|
||||
\item{concentration}{of electrolyte in mol/L, or as the string "saturated"} |
||||
|
||||
\item{temperature}{of system in degrees Celsius} |
||||
|
||||
\item{as.SHE.data}{dataframe with dataset} |
||||
} |
||||
\value{ |
||||
potential in SHE scale |
||||
} |
||||
\description{ |
||||
Convert an arbitrary number of potentials against any known electrochemical |
||||
scale (or the electronic vacuum scale) to potential vs SHE. |
||||
} |
@ -1,30 +0,0 @@ |
||||
% Generated by roxygen2: do not edit by hand |
||||
% Please edit documentation in R/unit-converters-electrochemical.R |
||||
\name{from.SHE} |
||||
\alias{from.SHE} |
||||
\title{Convert from SHE scale to another electrochemical or physical scale} |
||||
\usage{ |
||||
from.SHE(potential, scale, electrolyte = "", concentration = "saturated", |
||||
temperature = 25, as.SHE.data = potentials.as.SHE()) |
||||
} |
||||
\arguments{ |
||||
\item{potential}{potential in volt} |
||||
|
||||
\item{scale}{name of the target scale} |
||||
|
||||
\item{electrolyte}{optional, specify electrolyte solution, e.g., "KCl(aq)". Must match one of the values in \code{\link{potentials.as.SHE}$electrolyte}} |
||||
|
||||
\item{concentration}{of electrolyte in mol/L, or as the string "saturated"} |
||||
|
||||
\item{temperature}{of system in degrees Celsius} |
||||
|
||||
\item{as.SHE.data}{by default this parameter reads the full dataset \code{\link{potentials.as.SHE}}} |
||||
} |
||||
\value{ |
||||
potential in the specified target scale |
||||
} |
||||
\description{ |
||||
Convert an arbitrary number of potentials vs SHE to another electrochemical |
||||
scale (or the vacuum scale). |
||||
The available target scales are those listed by \code{\link{potentials.as.SHE}}. |
||||
} |
@ -1,27 +0,0 @@ |
||||
% Generated by roxygen2: do not edit by hand |
||||
% Please edit documentation in R/unit-converters-electrochemical.R |
||||
\name{potentials.as.SHE} |
||||
\alias{potentials.as.SHE} |
||||
\title{Potentials as SHE} |
||||
\usage{ |
||||
potentials.as.SHE() |
||||
} |
||||
\value{ |
||||
tidy dataframe with the following columns |
||||
\tabular{ll}{ |
||||
\code{electrode} \tab reference electrode \cr |
||||
\code{electrolyte} \tab electrolyte \cr |
||||
\code{conc.num} \tab concentration of electrolyte, mol/L \cr |
||||
\code{conc.string} \tab concentration of electrolyte, as string, may also note temperature at which conc \cr |
||||
\code{temp} \tab temperature / degrees Celsius \cr |
||||
\code{SHE} \tab potential vs SHE / volt \cr |
||||
\code{sid} \tab set id, just for housekeeping inside this function \cr |
||||
\code{reference} \tab BibTeX reference \cr |
||||
\code{dEdT} \tab temperature coefficient / volt/kelvin \cr |
||||
} |
||||
} |
||||
\description{ |
||||
This function just outputs a tidy dataframe with potential vs SHE for |
||||
different scales, electrolytes, concentrations, and temperatures. |
||||
Using data from literature. |
||||
} |
@ -1,26 +0,0 @@ |
||||
% Generated by roxygen2: do not edit by hand |
||||
% Please edit documentation in R/data.R |
||||
\docType{data} |
||||
\name{vapourwater} |
||||
\alias{vapourwater} |
||||
\title{Vapour pressure and other saturation properties of water} |
||||
\format{A data frame with 189 rows and 4 variables: |
||||
\describe{ |
||||
\item{temperature}{temperature/celsius} |
||||
\item{pressure}{pressure/kilopascal} |
||||
\item{enthalpy}{enthalpy of vapourisation/kilojoule per kilogram} |
||||
\item{surfacetension}{surface tension/millinewton per metre} |
||||
}} |
||||
\source{ |
||||
Handbook of Chemistry and Physics, 94th ed., 6-10-90, Eric W. Lemmon. |
||||
} |
||||
\description{ |
||||
A dataset summarising vapour pressure, enthalpy of vapourisation, |
||||
and surface tension of water from 0.01 Celsius to 373.95 Celsius. |
||||
Data as accepted by the International Association for the Properties |
||||
of Water and Steam for general scientific use. |
||||
Source: CRC handbook, 94th ed., table 6-10-90, Eric W. Lemmon. |
||||
} |
||||
\author{ |
||||
Taha Ahmed |
||||
} |
Loading…
Reference in new issue